Schlagwort-Archive: warum

Warum macht Wind alles kälter?

Die Temperaturen pendeln gerade wieder um den Gefrierpunkt. Die Nächte sind teils bitter kalt, die Sonne gewinnt allerdings schon wieder an Stärke wenn sie mal raus kommt. Einen großen Einfluss auf das Wetter und die Temperaturen im Winter hat aber auch noch ein anderes Naturphänomen: Der Wind.

Wenn wir im Winter nach draußen gehen und uns entscheiden müssen welche Jacke, Mütze oder Handschuhe wir anziehen, schauen wir als erstes auf das Thermometer. Oft merkt man draußen dann aber, dass es doch kälter ist als gedacht. Ein leichter Wind kann unser Temperaturempfinden stark beeinflussen. Auf vielen Wetterportalen wird daher mittlerweile neben der Lufttemperatur auch noch eine gefühlte Temperatur angegeben. Hier wird unter anderem der Effekt, den der Wind auf uns hat mit einberechnet. Wenn wir nach draußen gehen bilden wir nämlich durch unsere deutlich höhere Körpertemperatur eine Art wärmere Schutzschicht um uns herum aus. Die Luft in direkter Körpernähe wird erwärmt und hält damit die kältere Luft drum herum davon ab uns noch weiter abzukühlen. Kleidung versucht möglichst viel dieser warmen Luft am Körper zu halten. Wind hingegen bewirkt genau das Gegenteil. Er bläst die körpernahe, wärmere Luft von uns weg, so dass neue kalte Luft an den Körper gelangen kann. Das Resultat ist, dass es uns kälter vorkommt, wenn es zu niedrigen Temperaturen auch noch windig ist. Diesen Effekt nennt man übrigens auch „Windchill-Effekt“

Gleiches gilt natürlich auch für den Sommer und warme Lufttemperaturen. Im Sommer wird die kühlende Wirkung des Windes bei sehr heißen Temperaturen allerdings oft als angenehm empfunden.

 

Quellen:

https://www.watson.ch/Wissen/Winter/839421571-Fuer-alle–die-heute-schon-draussen-waren–oder-es-noch-vor-haben—10-eiskalte-Kaeltefakten

Warum werden schwarze Oberflächen heißer als weiße?

In den jetzt kommenden heißen Tagen merkt man es wieder extrem. Dunkle oder schwarze Oberflächen erwärmen sich in der Sonne viel stärker als helle. Das weiß eigentlich jeder aber hast du dich auch schon einmal gefragt warum das so ist?

Um das zu verstehen muss man erst einmal wissen, wie Farben überhaupt entstehen und warum ein Gegenstand schwarz oder vielleicht weiß ist.

Alles beginnt bei einer Lichtquelle. Diese Quelle sendet ein Lichtspektrum aus, also eine Überlagerung von elektromagnetischen Wellen verschiedener Wellenlängen. Im besten Fall ist das die Sonne. Das Spektrum der Sonne deckt nämlich den ganzen sichtbaren Bereich des Lichts ab. Das bedeutet, dass das uns weiß erscheinende Licht der Sonne eine Überlagerung aller Farben ist (siehe auch „Wie entsteht ein Regenbogen„). Damit wissen wir schon einmal, dass die Farbe Weiß dann entsteht, wenn alle Farben überlagert unser Auge erreichen. Schwarz ist dann das genaue Gegenteil. Schwarz sehen wir wenn gar kein Licht bzw. keine elektromagnetische Strahlung im sichtbaren Bereich in unser Auge fällt.

Von der Lichtquelle nun zu der Farbe eines Gegenstandes. Wenn beispielsweise Sonnenlicht auf eine uns rot erscheinende Oberfläche fällt, dann wird von dieser Oberfläche das Licht aller Wellenlängen absorbiert bis auf das rote. Absorbiert bedeutet, dass der Gegenstand die Energie des Lichts aufnimmt. Der in diesem Fall rote Teil des Lichts wird reflektiert und kann so unser Auge erreichen. Die Oberfläche sieht für uns also rot aus. Der zusätzliche Effekt der Absorption ist, das sich die Oberfläche durch die Aufnahme der Energie erwärmt. Je heller die Farbe, desto mehr wird von dem auftreffenden Licht reflektiert. Bis hin zu einer weißen Oberfläche, die alle Strahlung reflektiert und eine Überlagerung des kompletten Spektrums das Auge erreichen kann.

Mit diesem Wissen kann man sich auch erklären, warum ein schwarzer Gegenstand heißer wird als ein weißer. Der Schwarze absorbiert die komplette Strahlung, der Weiße reflektiert alles. Und nur durch die Absorption kann sich ein Gegenstand erwärmen.

Warum juckt ein Mückenstich?

Der Sommer ist da! Mit ihm kommen leider auch immer die ungeliebten Stechmücken zum Vorschein. Jeder kennt die Entscheidung für die abendliche Grillparty: Kurze, sommerliche Kleidung mit der wahrscheinlichen Folge von einigen Mückenstichen oder lange Klamotten, um den Mücken möglichst wenig Angriffsfläche zu geben. Doch warum jucken Stiche von Mücken eigentlich und was hilft am besten dagegen?

Zuerst einmal zur Ursache des Juckens. Mücken sondern beim Stechen ein speichelähnliches Sekret ab, das die Gerinnung des Blutes verlangsamt. So können sie in aller Ruhe das Blut saugen, das sie im Übrigen für die Produktion von Eiern brauchen und nicht als Nahrung, wie oft angenommen. Das ist auch der Grund, warum nur weibliche Mücken stechen. Der Mückenspeichel wird von unserem Körper als Fremdstoff erkannt und eine automatische Abwehrreaktion tritt in Kraft. An der Stelle des Stiches wird Histamin freigesetzt, dass eine Art allergische Reaktion auslöst. Folge ist eine Rötung der Stelle, verbunden mit einer leichten Schwellung und einem Juckreiz. Die Stärke der Reaktion ist grundsätzlich von der Menge an abgesondertem Speichel abhängig, jeder Mensch reagiert aber unterschiedlich stark auf Stiche.

An der Aussage: „Kratzen macht es nur schlimmer“ ist übrigens etwas dran. Durch kratzen wird das Histamin unter der Haut großflächig verteilt. Dadurch wird wiederum eine weitere Ausschüttung angeregt und die Reaktion des Körpers verstärkt sich. Um das Jucken minimal zu halten sollte die Einstichstelle gekühlt werden. Kälte wirkt lindernd auf Entzündungen und schwächt die Reaktion ab. Das allseits bekannte auftragen von Speichel auf einen Stich hat ebenfalls einen kühlenden Effekt und kann somit das Jucken abschwächen.

 

Quellen:

http://www.n-tv.de/wissen/frageantwort/Warum-juckt-ein-Mueckenstich-article3594551.html

http://www.rp-online.de/panorama/wissen/wie-lange-und-warum-jucken-mueckenstiche-ein-dermatologe-erklaert-aid-1.1624817

Warum werden unsere Haare im Alter grau?

Viele Menschen haben Angst vor grauen Haaren, Andere sehen sie als Zeichen der Weisheit. Vermeiden lassen sich graue Haare im Alter nicht. Aber was passiert mit unseren Haaren, damit sie grau werden.

Für die Farbe unserer Haare ist das so genannte Melanin verantwortlich, ein Farbpigment, das von Pigmentdrüsen an der Haarwurzel gebildet wird und beim Wachstum in die Hornschichten der Haare eingelagert wird. Das Grauwerden der Haare ist eine Folge der Funktionsrückbildung der Pigmentdrüsen. Wird nicht mehr genug Melanin produziert, werden stattdessen kleine Luftbläschen in die Hornschichten der Haare eingelagert. Optisch sehen die Haare dadurch grau bzw. weiß aus. Die Rückbildung kann mehrere Ursachen haben. Ganz natürlich ist eine Rückbildung mit zunehmendem Alter. Die Leistung der Drüsen nimmt mit dem Alter ab. Die Folge sind graue Strähnen bis hin zum völligen Verlust der Haarfarbe. Aber auch andere Faktoren wie Stress, Rauchen oder schwere Erkrankungen können den Verfall der Pigmentdrüsen voranschreiten lassen. Zusätzlich ist das Grauwerden der Haare aber auch genetisch bedingt. Es gibt gesund lebende Menschen, die mit 30 Jahren schon graue Haare bekommen, ebenso gibt es sechzigjährige mit noch völlig natürlicher Haarpracht. Man kann den Prozess somit nur bedingt beeinflussen, eine ausgewogene Ernährung und ein stressarmes Leben können die Haaralterung allerdings verzögern.

Im Übrigen treten graue Haare meistens als ersten im Bereich der Schläfen oder bei Männern im Bart auf. Die Wachstumsrate der Haare ist an diesen Stellen am schnellsten. Die Pigmentdrüsen sind dadurch an diesen Stellen auch am meisten beansprucht.

 

Quellen:

https://www.zentrum-der-gesundheit.de/graue-haare.html

http://www.weltderwunder.de/artikel/warum-bekommen-wir-graue-haare

Warum fliegt ein angeschnittener Ball eine Kurve? (Magnus-Effekt)

Jeder, der eine Ballsportart selber betreibt oder sportbegeisterter Zuschauer ist hat folgendes schon einmal gesehen: Ein rotierender Ball fliegt in der Luft eine Kurve. Für viele aktive Sportler ist das selbstverständlich aber warum fliegt der Ball eigentlich eine Kurve?

Grund hierfür ist der sogenannte Magnus Effekt, benannt nach dem Wissenschaftler, der den Effekt als Erster physikalisch beschrieben hat. Zunächst betrachten wir mal die Luft direkt an der Oberfläche eines rotierenden Balls. Diese Luft wird durch die Rotation und die dadurch entstehende Reibung in Bewegung versetzt. Der Ball reißt quasi eine kleine Luftschicht mit seiner Kreisbewegung mit. Wenn sich der Ball nun durch die Luft bewegt, wie er das zum Beispiel bei einem Freistoß beim Fußball tut, dann wird er zusätzlich gegen seine Flugrichtung mit Luft umströmt. Diese Luft tritt wiederum in Interaktion mit der dünnen Luftschicht, die von der Rotation des Balls mitgerissen wird. Auf der einen Seite strömt die Umgebungsluft und die dünne Luftschicht in die gleiche Richtung. Auf der anderen Seite allerdings genau entgegengesetzt. Die Folge ist, dass die Strömungsgeschwindigkeit auf der einen Seite erhöht, auf der Anderen aber reduziert wird. Bei strömenden Gasen (und Flüssigkeiten) gilt jetzt folgendes: Je höher die Strömungsgeschwindigkeit, desto geringer der Druck an dieser Stelle. Das hat irgendwann ein gewisser Daniel Bernoulli festgestellt und in der sehr bekannten und allgemein gültigen Bernoulli-Gleichung festgehalten. Für den rotierenden Ball bedeutet das, dass auf der einen Seite eine höherer Druck herrscht als auf der Anderen. Die Folge ist, dass der Ball eine Kraft in Richtung des geringeren Drucks erfährt und zur Seite gedrückt wird. Da dies während der ganzen Flugphase des Balls der Fall ist, fliegt dieser eine Kurve. Wie stark der Ball abgelenkt wird hängt vor allem von der Rotationsgeschwindigkeit ab.

In vielen Ballsportarten wird dieser Effekt oft ausgenutzt und jetzt weißt du auch warum er auftritt und sogar wie er heißt.

Ein sehr cooles Video demonstriert diesen Effekt mit einem Basketball, der mit und ohne Spin von einem Staudamm geworfen wird. Schaut´s euch mal an:

 

Quellen:

http://www.wissen.de/raetsel/warum-fliegt-der-eckball-eine-kurve

https://lp.uni-goettingen.de/get/text/3773

Warum ist die Chili scharf ?

Nicht jeder mag es, aber viele Köche benutzen Chili in verschiedenster Form, um ihre Speisen zu würzen und ihnen eine gewisse Schärfe zu verleihen.

Aber warum ist die Chili überhaupt scharf?

Verantwortlich ist dafür das in der Chili enthaltene Capsaicin, das sich vor allem in den weißen Scheidenwänden und direkt unter der Außenhaut einer Chili befindet. Das Capsaicin wird in unserem Mund von den Wärme- und Schmerzrezeptoren wahrgenommen. Streng genommen ist Schärfe also kein Geschmack, sondern ein Schmerzreiz. Das ist auch der Grund, warum heiße Speisen mit Chili als schärfer wahrgenommen werden als kalte.

Wenn man einmal zu viel einer scharfen Speise erwischt hat oder den Schärfegrad des Essens ein wenig unterschätzt hat, möchte man die Schärfe möglichst schnell wieder aus dem Mund bekommen. Wasser, das oft instinktiv getrunken wird, bewirkt nur eine zwischenzeitige Kühlung des Mundraumes. Da ja die Wärme und Schmerzrezeptoren auf das Capsaicin ansprechen, wird durch die Kühlung auch eine zwischenzeitige Schmerzlinderung erzielt. Um das Capsaicin aber aus dem Mund zu entfernen bringt Wasser nichts. Das Capsaicin kann sich nämlich in dem Wasser nicht lösen. Fett dagegen, ist in der Lage Capsaicin zu lösen und somit aus dem Mund auszutragen. Besser ist also entweder Milch zu trinken oder fetthaltige Lebensmittel wie Käse oder Joghurt zu essen.

Der Schärfegrad einer Chili wird übrigens mit Hilfe der Scoville- Skala angegeben. Diese besagt, wie viel Wasser benötigt wird, um die vorhandene Schärfe zu neutralisieren bzw. nicht mehr erkennbar zu machen. Wenn eine Chilisauce zum Beispiel mit 1000 Scoville angegeben ist, bedeutet das, dass man für einen Milliliter dieser Soße 1000 Milliliter Wasser (1 Liter) benötigt, um die Schärfe zu neutralisieren.

Auch bei der Schärfe der Chili hat sich die Natur etwas gedacht. Die Samen der Chilipflanze werden bei der Verdauung durch Säugetiere zerstört, wodurch die Pflanze sich nicht verbreiten könnte. Die Schärfe hält Säugetiere davon ab die Chilis zu essen (mal abgesehen vom Menschen, der sich die Schärfe absichtlich „antut“). Vögel hingegen besitzen keine Rezeptoren, die Capsaicin detektieren können. Ihr Verdauungstrakt ist aber auch so kurz, dass die Kerne der Chili diesen unbeschadet überstehen können und die Samen dadurch verbreitet werden.

Warum müssen wir beim Zwiebel schneiden weinen?

Die Zwiebel ist eine der vielseitigsten Gemüsesorten überhaupt. Trotzdem gibt es beim Kochen mit Zwiebeln immer ein Problem: Das Schneiden.

Warum müssen wir beim Zwiebel schneiden immer weinen?

Zwei Inhaltsstoffe der Zwiebel sind letztendlich für die Tränen verantwortlich. In den Zellwänden der Zwiebel befindet sich eine Aminosäure, das so genannte Iso-Alliin. In der Zelle selber befindet sich ein Enzym mit dem Namen Alliinase. Normalerweise kommen diese beiden Stoffe nicht in Kontakt mit einander. Wenn die Zellen allerdings zerstört werden, was z.B. beim Schneiden der Zwiebel der Fall ist, treten die beiden Substanzen in Kontakt und die Alliinase spaltet das Iso- Alliin in kleinere Teile. Es entsteht ein schwefelhaltiges Reizgas, das bei Kontakt mit Wasser sehr geringe Mengen an Schwefelsäure bildet. Das Wasser liefert in unserem Fall die Tränenflüssigkeit, die unsere Augen immer bedeckt. Unsere sehr empfindlichen Augen reagieren gereizt auf die Säure und als Abwehrreaktion wird mehr Tränenflüssigkeit produziert, um die Säure aus dem Auge raus zu spülen. Der Effekt: wir weinen.

Das klingt jetzt alles nicht sehr gesund, ist aber auch bei einer größeren Anzahl an geschnittenen Zwiebeln völlig harmlos und ungefährlich.

Die Natur hat sich aber dabei natürlich auch etwas gedacht: Das Reizgas soll potenzielle „Fressfeinde“ der Zwiebel, wie Wühlmäuse oder Ratten fern halten.

Gegen das Weinen hilft übrigens tatsächlich nur die Zwiebel möglichst weit von den Augen entfernt zu schneiden und sich vor allem nicht darüber zu beugen, da das Gas nach oben steigt.

Also lasst euch beim Kochen nicht aufhalten. Zwiebeln sind gesund und lecker 😉

Warum werden wir von der Sonne braun?

Der Sommer ist da und so langsam erkennt man, wer bereits öfter in der Sonne war. Im Freibad sieht man auch, wer vielleicht eher mit T-Shirt in der Sonne war und dadurch einen Übergang von braun zu hell auf der Haut am Arm hat.

Doch warum werden wir eigentlich braun, wenn wir für längere Zeit in der Sonne sind?

Verantwortlich ist dafür die ultraviolette Strahlung der Sonne (UV- Strahlung). Das Licht, das von der Sonne auf die Erde fällt, enthält neben dem für uns sichtbaren Bereich der Farben auch noch UV- Strahlung und Infrarot Strahlung. Beide Bereiche sind für das menschliche Auge nicht sichtbar. Infrarotstrahlung wird auch Wärmestrahlung genannt. Diese Strahlung können wir zwar nicht direkt sehen, aber sehr wohl spüren. Sie ist für die wärmende Wirkung der Sonnenstrahlen verantwortlich.

Die UV- Strahlung spüren wir nicht direkt, sie hat allerdings trotzdem starke Auswirkungen auf uns. Bei zu intensiver oder zu langer Bestrahlung der Haut mit UV- Strahlen bekommen wir einen Sonnenbrand und die Haut wird nachhaltig geschädigt, was im schlimmsten Fall zu Hautkrebs führen kann.

Bei moderater Bestrahlung wird unsere Haut dagegen braun, was auf einen körpereigenen Schutzmechanismus zurückzuführen ist. Die Haut erkennt die UV- Bestrahlung und produziert das Pigment Melanin. Dieses ist in der Lage UV- Strahlen zu absorbieren und bildet eine Art Schutzschicht um die Hautzellen. Je mehr Melanin vorhanden ist, desto brauner wird die Haut. Folglich ist dunklere Haut auch unempfindlicher als helle Haut. Zumindest in Bezug auf Sonnenbrandgefahr.

Grundsätzlich gilt: Die Haut „merkt“ sich jeden Sonnenstrahl, den sie abbekommt. Man sollte also immer darauf achten sich ausreichend zu schützen und nicht zu lange in der Sonne zu bleiben. Ein gutes Mittel sind hier natürlich Sonnencremes. Dabei ist darauf zu achten, dass diese sowohl UV-A als auch UV-B Schutz bieten. Es gibt nämlich zwei verschiedene Arten der UV- Strahlung. Die gefährlichere ist die UV-B Strahlung. Diese ist sowohl für die Bildung des Melanins als auch für den Sonnenbrand mit all seinen langfristigen Folgen verantwortlich. UV-A Strahlung kann allerdings die Hautalterung vorantreiben und ist somit auch so gering wie möglich zu halten.

Wenn man sich das merken will gibt es eine kleine Eselsbrücke:

UV-A —> HautAlterung

UV-B —> SonnenBrand

Wenn du also das nächste Mal ein Sonnenbad nimmst oder bei perfektem Wetter auf der im Freibad unterwegs bist, weißt du, dass dein Körper dabei ist Melanin zu produzieren um die Haut zu schützen. Die Farbe des Melanins, also braun, ist hier reiner Zufall. Ein Glück also das Melanin nicht blau ist 😉

 

Quellen:

https://www.warum-wieso.de/mensch/warum-wird-man-in-der-sonne-braun/

https://www.euromelanoma.de/jsp_public/cms2/index.jsp?did=1918

Warum schrumpelt unsere Haut im Wasser?

Bei dem sommerlichen Wetter kann man eine Abkühlung in einem Freibad oder einem See immer gut gebrauchen. Wenn man einmal im Wasser ist, möchte man am liebsten gar nicht mehr raus. Wenn man lange genug im Wasser bleibt kann man an seinen Händen und Füßen etwas merkwürdiges erkennen. Die Haut an Fingerspitzen und Zehen ist total „schrumpelig“ geworden. Warum ist das eigentlich so?

Zu der gängigen Erklärung gibt es mittlerweile auch weitere wissenschaftliche Untersuchungen zum eigentlichen Zweck der ganzen Sache.

Doch zuerst einmal zu der verbreiteten Erklärung warum unsere Haut bei längerem Kontakt mit Wasser schrumpelt.

An den Fingerspitzen und den Zehen bildet sich bei Menschen eine relativ dicke Schicht von so genannte Hornzellen. Diese Zellen sind abgestorbene Hautzellen, die die oberste Schicht der Haut bilden. Sie sind überall zu finden, jedoch gehäuft an stark strapazierten Hautstellen, wie Fingerspitzen oder eben auch Zehen. In diesen Zellen herrscht ein relativ hoher Salzgehalt. Wenn die Finger nun lange genug unter Wasser sind, nehmen die Hornzellen dieses auf. Doch warum tun sie das?

Die Natur versucht grundsätzlich immer Gleichgewichte zu schaffen. Wenn sich der Finger im Wasser befindet, bildet die Haut eine Grenzschicht. Außen ist viel Wasser, das aber nur wenige Salze enthält. Innen sind die Hornzellen, die einen hohen Salzgehalt aufweisen. Jetzt gibt es zwei Möglichkeiten eine Gleichgewicht herzustellen. Entweder das Salz aus den Zellen gelangt nach außen, oder das Wasser gelangt in die Zellen. Da unsere Haut für Salze aber undurchlässig ist, tritt immer der zweite Fall ein.

Die Hornzellen saugen sich also mit Wasser voll, werden dadurch größer und die Haut dehnt sich aus. Da der Finger aber natürlich nicht mitwächst entsteht eine Wellenartige HautstrukturRunzelhaut.

Warum passiert das Ganze dann nicht sofort, sobald wir die Hand ins Wasser tauchen?

Hier kommt ein Schutzmechanismus der Haut ins Spiel. Die Fettschicht. Die Haut produziert überall eine dünne Fettschicht, die sie vor äußeren Einflüssen schützt. Wenn man die Hand nun lange genug im Wasser lässt, löst sich auch diese Fettschicht auf. Sobald das der Fall ist, fängt die Haut an das Wasser aufzunehmen und sie wird schrumpelig.

Wie bereits erwähnt, haben Wissenschaftler nun noch versucht einen höheren Sinn bzw. einen Nutzen dieses Phänomens zu finden. Mit Hilfe von Probanden haben sie herausgefunden, dass wir mit dieser runzeligen Haut besser in der Lage sind nasse Gegenstände mit den Händen zu greifen. Es könnte zusätzlich also auch noch sein, dass der Körper diese wellige Haut gezielt aufbaut, um im nassen Medium Sachen besser hantieren zu können. Es gibt bereits Untersuchungen mit Menschen, deren Nervenstruktur in den Fingern geschädigt ist. In manchen Fällen bildete sich bei ihnen keine Runzelhaut im Wasser. Das wiederum deutet auf eine aktive Reaktion des Körpers auf die Umgebung im Wasser hin. Es wird wohl noch mehrere Studien brauchen, bis die Frage der runzeligen Haut im Wasser vollständig geklärt ist.

 

Quellen:

https://www.geo.de/wissen/gesundheit/16429-rtkl-endlich-verstehen-darum-schrumpeln-unsere-finger-im-wasser

https://www.spektrum.de/magazin/warum-schrumpeln-finger-im-wasser/1435068

Warm/Kalt – Warum fühlt sich Metall kühler an als Holz?

Man befindet sich in einem Raum, in dem eine Zimmertemperatur von etwa 20°C herrscht. Man könnte also meinen, dass alles in diesem Raum die gleiche Temperatur angenommen hat. Wenn man nun allerdings einen Gegenstand aus Holz anfasst und danach etwas metallenes berührt, kommen einem die beiden Sachen nicht gleich warm vor. Das Metall scheint deutlich kühler zu sein als das Holz. Doch ist das wirklich so?

Tatsächlich sind beide Dinge gleich warm. Wie soll es auch anders sein? Beide Gegenstände liegen in einem Raum bei annähernd konstanter Temperatur. Man kann sich gut vorstellen das mit der Zeit alle Gegenstände die Zimmertemperatur annehmen. Etwas Wärmeres würde sich nach und nach abkühlen und ein kaltes Getränk beispielsweiße würde sich bis auf die Temperatur der Luft erwärmen.

Aber warum kommt uns nun das Metall kühler vor als das Holz?

Die Antwort liegt in der Wärmeleitung. Unsere Haut hat etwa eine Temperatur von 30°C. Wenn wir einen Gegenstand anfassen, der kälter ist als die Haut, kann die Wärme von der Haut auf diesen Gegenstand übergehen. Die unterschiedlichen Wärmeübergangsmechanismen habe ich bereits im Artikel zur „eingefrorenen Windschutzscheibe“ erklärt (https://lustaufwissen.wordpress.com/2015/04/28/die-eingefrorene-windschutzscheibe/ ). Da hier ein direkter Kontakt vorliegt spricht man von Wärmeleitung.

Wärmeleitung kann aber nicht nur zwischen zwei verschiedenen Dingen stattfinden, sondern auch innerhalb eines Gegenstandes (hier Holz bzw. Metall). Diese Wärmeleitung ist aber nicht in jedem Stoff gleich gut. Metalle haben in der Regel eine sehr gute Wärmeleitfähigkeit. Wärme, die an einer Stelle an das Metall gelangt, kann also sehr schnell durch das ganze Metallstück geleitet werden und verteilt sich darin. Holz besitzt im Gegensatz dazu eine eher schlechte Wärmeleitfähigkeit.

Wenn man nun mit dem warmen Finger ein Stück Metall berührt, geht die Wärme vom Finger in das Metall über. Dort wird die Wärme aber sofort abgeführt und verteilt. Die Berührungsstelle nimmt also nicht die Temperatur des Fingers an sondern bleibt kühl und entzieht dem Finger somit immer mehr Wärme. Das Resultat ist, dass sich das Metall tatsächlich wie 20° anfühlt. Im Vergleich zu den 30° der Haut also kühl. Beim Holz funktioniert das Ableiten der Wärme nicht so gut. Die Berührungsstelle nimmt also die Temperatur des Fingers an und das Holz kommt einem dann wärmer vor als das Metall. Das Ganze passiert natürlich so schnell, dass man beim Holz nicht merkt wie es sich aufwärmt.

Dinge, die uns bei gleicher Temperatur kühler vorkommen sind folglich gar nicht kühler, sie besitzen nur eine bessere Wärmeleitfähigkeit.

Gleiches gilt natürlich auch für Temperaturen oberhalb der Hauttemperatur. Bei heißem Metall kann nach dem Übergang der Wärme an der Berührungsstelle die Wärme aus dem restlichen Teil des Metalls schnell nachfließen und wieder in die Haut übergehen. Bei Holz dauert das länger. Folglich sind Verbrennungen an Metall deutlich gravierender als die, die bei Berührung mit Holz entstehen. Auch wenn Holz und Metall die gleiche Temperatur haben.