Schlagwort-Archive: warm

Das „Knacken“ der Eiswürfel

So langsam erreichen wir teilweise schon wieder sommerliche Temperaturen, so dass man doch gerne mal zu einem gut gekühlten Getränk greift. Direkt aus dem Kühlschrank ist das kein Problem. Was aber wenn das favorisierte Getränk nicht im Kühlschrank stand? Oft werden dann Eiswürfel aus dem Gefrierfach herangezogen, um das Getränk etwas abzukühlen. Wer beim Eintauchen der Eiswürfel in das Getränk schon einmal genau hingehört hat, der hat sicherlich ein signifikantes „Knacken“ wahrgenommen. Aber warum knacken Eiswürfel, wenn man sie in ein Getränk gibt?

Im Grunde liegt das an der Tatsache, dass sich Eis genau wie jeder andere Stoff mit einer Temperaturänderung ausdehnt oder zusammen zieht. Mit steigender Temperatur nimmt die Dichte des Eises ab und es dehnt sich aus. Soweit ganz normal, aber was hat das mit dem „Knacken “ zu tun? Ein Eiswürfel, der aus dem Gefrierfach kommt, hat etwa eine Temperatur von -18 °C. Ein Getränk bei Raumtemperatur etwa 20 °C. Kommt das Eis nun in Kontakt mit dem Getränk, wärmt es sich auf. Allerdings erst einmal nur die äußere Schicht des Eiswürfels. Bis die Wärme des Getränks ins Innere des Würfels gelangt dauert es einige Sekunden. Die äußere Schicht, die jetzt wärmer geworden ist, dehnt sich aus, wobei der Kern des Würfels immer noch kalt und kompakt ist. Die nicht gleichmäßige Ausdehnung des Eises sorgt dafür, dass Spannungen im Eiswürfel auftreten und schlagartig Risse entstehen. Genau das hört man dann als leises Knacken. Wer genau hin schaut, kann die Risse im Eiswürfel auch sehen.

Bei bereits sehr kalten Getränken passiert das nicht oder nur deutlich schwächer. Der geringere Temperaturunterschied zwischen Getränk und Eis lässt die äußere Schicht des Würfels weniger schnell erwärmen und die entstehenden Spannungen sind geringer. Auch wenn der Eiswürfel gerade so erst gefroren ist oder bereits länger außen liegt, wird kein Knacken zu hören sein. In beiden Fällen hat das Eis nämlich nur etwas weniger als 0 °C. Wenn nun die äußere Schicht erwärmt wird, schmilzt sie einfach zu Wasser und hat somit keinen Einfluss mehr auf den Rest des Würfels.

Wenn du dir das nächste Mal ein kühles Getränk gönnst und Eiswürfel benutzt, kannst du ja mal genau hinhören und herausfinden, ob der Temperaturunterschied groß genug ist um das „Knacken“ hervorzurufen.

 

Quellen:

https://www.ja-gut-aber.de/warum-knacken-eiswuerfel-in-getraenken/

Warum kühlt ein Ventilator?

So langsam werden die Tage wieder wärmer und der Ein oder Andere macht sich schon wieder Sorgen im Sommer in einem heißen Raum zu sitzen ohne sich zwischendurch abkühlen zu können. Ein einfacher Ventilator kommt da oft gelegen um sich etwas kühle Luft zuwehen zu lassen. Aber warum kühlt ein Ventilator überhaupt? Schließlich enthält er keinerlei tatsächlich kühlende Komponenten.

In der Tat ändert ein Ventilator erst einmal rein gar nichts an der Temperatur der Luft, die sich beispielsweise in einem Raum befindet. Er bringt sie lediglich in Bewegung. Diese Bewegung führt zu einem schnelleren Luftaustausch an der Stelle, wo der Ventilator hin bläst – zum Beispiel unsere Haut. Ist die Umgebungsluft kühler als unsere Haut, so wird durch den Luftaustausch der kühlende Effekt der Luft verstärkt. Die von der Haut aufgewärmte Luft wird weggeblasen und neue kühle Luft kann zur Haut hin gelangen. Ist die Umgebungsluft allerdings schon wärmer als die Hauttemperatur, so fällt dieser Effekt weg. Ein Ventilator ist trotzdem noch in der Lage eine kühlende Wirkung hervorzurufen, aber wie geht das?

Der Luftaustausch hat auch noch einen anderen Effekt. Wenn wir schwitzen verdunstet der Schweiß auf der Haut. Für diese Verdunstung wird Energie benötigt. Diese Energie zieht der Schweiß in Form von Wärme aus der Haut. Das Resultat ist, die Haut kühlt sich ab. Schweiß verdunstet aber nur solange die Luft direkt in Hautnähe nicht zu feucht ist. Sie kann nämlich nur eine gewisse Menge an Feuchtigkeit (hier verdunstender Schweiß) aufnehmen. Durch den Luftaustausch wird immer frische, trockenere Luft zur Haut hin transportiert. Das heißt durch den Ventilator wird der natürliche Kühlmechanismus des Menschen verstärkt. Somit kann dieser auch bei Temperaturen oberhalb unserer Hauttemperatur für eine angenehme Kühlung sorgen.

Natürlich funktioniert das Ganze nur bis zu einer bestimmten Lufttemperatur. Wer in einer Sauna schon einmal einem Luftzug ausgesetzt war, zum Beispiel durch ein wedelndes Handtuch, der weiß, dass der Effekt hier umgekehrt wird und der Luftaustausch hier eine erhitzende Wirkung hat. Zu viele Ventilatoren im Dauerbetrieb sind übrigens auch nicht gut, da der Motor eines Ventilators Wärme abgibt und somit die Raumluft sogar aufwärmen kann. Sobald man die Ventilatoren dann ausschaltet ist es wärmer also vorher ohne Ventilatoren.

Wie entsteht ein Gewitter?

Im letzten Beitrag ging es um die Entstehung eines Tornados in einer Gewitterwolke. Diese Woche geht es darum, wie denn eine solche Gewitterwolke und die zu einem Gewitter gehörigen Phänomene wie Blitz und Donner entstehen.

Als Grundvoraussetzung wird warme, feuchte Luft in Bodennähe benötigt. Das ist der Hauptgrund, warum Gewitter meist im Sommer stattfinden. Diese warme Luft steigt auf Grund geringerer Dichte nach oben. Auf dem Weg nach oben kühlt sie sich ab. Ab einem gewissen Punkt fängt die Feuchtigkeit in der Luft an zu kondensieren und es bildet sich eine Wolke. Bei der Kondensation des Wassers wird allerdings weitere Wärme frei, die die Luftmasse weiter nach oben steigen lässt. Das Ganze passiert bis zu einem Höhenbereich in dem es so kalt ist, dass die Wassertropfen anfangen zu gefrieren. Die Eiskristalle fallen dann in der Wolke nach unten, können aber durch den in der Wolke herrschenden Aufwind wieder nach oben transportiert werden. Dabei wachsen sie immer weiter an bis sie letztendlich so groß sind, dass der Aufwind sie nicht mehr mitreißen kann und sie als Hagel, Graupel oder große Regentropfen auf die Erde fallen. Durch das ständige Hoch und Runter der Eiskristalle und Wassertropfen in der Wolke lässt sich nicht verhindern, dass diese auch aneinander stoßen und reiben. Dabei können von den aufsteigenden Tropfen Elektronen an die herabfallenden Eiskristalle abgegeben werden. Durch eine hohe Häufigkeit dieses Prozesses in der Wolke entsteht ein Ladungsfeld mit einem Elektronenüberschuss am unteren Ende (Minuspol) und einer Elektronenarmut am Kopf der Wolke (Pluspol). Diese Ladungen in der Wolke interagieren nun auch mit der Erdoberfläche. Hier gilt das allgemeine physikalische Gesetz: „Gegensätze ziehen sich an, Gleiches stößt sich ab“. Die negativ geladene Unterseite der Wolke erzeugt dadurch eine positive Ladung auf der darunter liegenden Erdoberfläche. Die Elektronen werden dort von den Elektronen der Wolke abgestoßen und es entsteht auch hier eine Elektronenarmut (Pluspol). Zwischen dem Minuspol der Wolke, der durch weitere Ladungstrennung in der Wolke immer stärker wird, und dem Pluspol auf der Erdoberfläche herrscht nun eine Spannung. Diese Spannung kann übrigens mehrere hundert Millionen Volt betragen. Wenn die Spannung groß genug ist kann sie sich in Form eines Blitzes entladen. Die kritische Spannung die überwunden werden muss liegt bei etwa 170.000 Volt pro Meter Abstand zwischen Wolke und Erdoberfläche. Blitze können allerdings auch zwischen Wolken oder innerhalb einer Wolke entladen werden. Hierfür sind etwas geringere Spannungen nötig. Deshalb ereignet sich ein Großteil der Blitze in den Wolken und nur ein geringer Teil geht bis auf die Erde.

Ein Blitz ist in der Lage die Luft auf extrem hohe Temperaturen zu erwärmen. Die Luft unmittelbar um den Blitzkanal wird schlagartig auf bis zu 30.000°C erhitzt. Die erhitzte Luft breitet sich dabei explosionsartig aus und bildet eine Druckwelle. Diese Druckwelle vernehmen wir als Donner wenn sie unser Ohr erreicht. Durch verschieden Einflüsse auf dem Weg zu uns kann der Donnerton in eine längeres „Grollen“ verzerrt werden.

Das faszinierende Phänomen Gewitter beinhaltet natürlich noch viel mehr Details aber ich denke mit dem oben Beschriebenen kann man sich ungefähr ein Bild davon machen was sich in und um einer Gewitterwolke herum abspielt.

 

Quellen:

http://www.weltderphysik.de/thema/hinter-den-dingen/klima-und-wetter/gewitterblitze/

https://www.nela-forscht.de/2011/06/08/wie-entsteht-ein-gewitter/

Wie entsteht ein Tornado?

Viele von euch haben es wahrscheinlich mitbekommen: Am Donnerstagnachmittag gab es in der Nähe von Würzburg einen  Tornado, der erhebliche Sachschäden anrichtete. Normalerweise kennt man Tornados nur aus Filmen oder Dokumentationen aus Amerika. Aber auch in Deutschland können die gefährlichen Wirbelstürme entstehen. Doch wie genau entsteht so ein Tornado?

Grundsätzlich müssen dafür zwei Luftmassen aufeinander treffen, die sich stark unterscheiden. Die Eine ist sehr feucht, warm und in Bodennähe, wohingegen die Andere deutlich kälter und in höheren Lagen sein muss. Da kalte Luft schwerer ist als warme, entsteht eine Verwirbelung der Luft. Die warme Luft steigt auf, während die kalte Luft nach unten fällt. Dieser Wirbel, der zur Bildung einer Gewitterwolke führt ist aber erst einmal horizontal ausgerichtet. Damit der für einen Tornado ausschlaggebende vertikale Wirbel entstehen kann, benötigt es zusätzlich einen starken Seitenwind, der in der Lage ist den horizontalen Wirbel aufzurichten. Der Wirbel, der sich nun in die vertikale gedreht hat, bildet in seinem Inneren einen Unterdruck, der weitere warme Luft aus Bodennähe ansaugt. Durch diesen Effekt verstärkt sich der Wirbel. Er wird immer schneller und breitet sich in Richtung Boden aus. Erst wenn der Fuß des Wirbels den Erdboden erreicht hat spricht man von einem Tornado. Durch den beschriebenen Effekt der Verstärkung können in einem Tornado Windgeschwindigkeiten von bis zu 500 Km/h entstehen. Die extrem hohen Windgeschwindigkeiten und der starke Unterdruck im Inneren des Tornados sorgen für die zerstörerische Kraft des Wirbelsturms. Tornados werden auf einer Skala von 0-6 in ihrer Stärke eingeordnet. Da die tatsächlichen Windgeschwindigkeiten nur schwer zu messen sind, beruhen die Kategorien auf dem Ausmaß der Zerstörung des Sturms. Sie reichen von 0 mit abgebrochenen Ästen bis hin zur totalen Zerstörung selbst massiver Stahlbetonbauten in der Kategorie 6. Ein Tornado dieser Stärke wurde allerdings noch nie in der Natur beobachtet.

Der Tornado vom Donnerstag wird wohl in die Kategorie 1 -2 einzuordnen sein. Einige Dächer wurden teilweise abgedeckt und größere Hallen wurden zum Einsturz gebracht. Glücklicherweise wurde bei diesem Sturm aber niemand verletzt.

Quellen:

http://www.sturmwetter.de/texte/tornadoentstehung.htm

http://www.br.de/nachrichten/unterfranken/inhalt/windhose-kuernach-unwetter-100.html

Warum ist die Chili scharf ?

Nicht jeder mag es, aber viele Köche benutzen Chili in verschiedenster Form, um ihre Speisen zu würzen und ihnen eine gewisse Schärfe zu verleihen.

Aber warum ist die Chili überhaupt scharf?

Verantwortlich ist dafür das in der Chili enthaltene Capsaicin, das sich vor allem in den weißen Scheidenwänden und direkt unter der Außenhaut einer Chili befindet. Das Capsaicin wird in unserem Mund von den Wärme- und Schmerzrezeptoren wahrgenommen. Streng genommen ist Schärfe also kein Geschmack, sondern ein Schmerzreiz. Das ist auch der Grund, warum heiße Speisen mit Chili als schärfer wahrgenommen werden als kalte.

Wenn man einmal zu viel einer scharfen Speise erwischt hat oder den Schärfegrad des Essens ein wenig unterschätzt hat, möchte man die Schärfe möglichst schnell wieder aus dem Mund bekommen. Wasser, das oft instinktiv getrunken wird, bewirkt nur eine zwischenzeitige Kühlung des Mundraumes. Da ja die Wärme und Schmerzrezeptoren auf das Capsaicin ansprechen, wird durch die Kühlung auch eine zwischenzeitige Schmerzlinderung erzielt. Um das Capsaicin aber aus dem Mund zu entfernen bringt Wasser nichts. Das Capsaicin kann sich nämlich in dem Wasser nicht lösen. Fett dagegen, ist in der Lage Capsaicin zu lösen und somit aus dem Mund auszutragen. Besser ist also entweder Milch zu trinken oder fetthaltige Lebensmittel wie Käse oder Joghurt zu essen.

Der Schärfegrad einer Chili wird übrigens mit Hilfe der Scoville- Skala angegeben. Diese besagt, wie viel Wasser benötigt wird, um die vorhandene Schärfe zu neutralisieren bzw. nicht mehr erkennbar zu machen. Wenn eine Chilisauce zum Beispiel mit 1000 Scoville angegeben ist, bedeutet das, dass man für einen Milliliter dieser Soße 1000 Milliliter Wasser (1 Liter) benötigt, um die Schärfe zu neutralisieren.

Auch bei der Schärfe der Chili hat sich die Natur etwas gedacht. Die Samen der Chilipflanze werden bei der Verdauung durch Säugetiere zerstört, wodurch die Pflanze sich nicht verbreiten könnte. Die Schärfe hält Säugetiere davon ab die Chilis zu essen (mal abgesehen vom Menschen, der sich die Schärfe absichtlich „antut“). Vögel hingegen besitzen keine Rezeptoren, die Capsaicin detektieren können. Ihr Verdauungstrakt ist aber auch so kurz, dass die Kerne der Chili diesen unbeschadet überstehen können und die Samen dadurch verbreitet werden.

Warm/Kalt – Warum fühlt sich Metall kühler an als Holz?

Man befindet sich in einem Raum, in dem eine Zimmertemperatur von etwa 20°C herrscht. Man könnte also meinen, dass alles in diesem Raum die gleiche Temperatur angenommen hat. Wenn man nun allerdings einen Gegenstand aus Holz anfasst und danach etwas metallenes berührt, kommen einem die beiden Sachen nicht gleich warm vor. Das Metall scheint deutlich kühler zu sein als das Holz. Doch ist das wirklich so?

Tatsächlich sind beide Dinge gleich warm. Wie soll es auch anders sein? Beide Gegenstände liegen in einem Raum bei annähernd konstanter Temperatur. Man kann sich gut vorstellen das mit der Zeit alle Gegenstände die Zimmertemperatur annehmen. Etwas Wärmeres würde sich nach und nach abkühlen und ein kaltes Getränk beispielsweiße würde sich bis auf die Temperatur der Luft erwärmen.

Aber warum kommt uns nun das Metall kühler vor als das Holz?

Die Antwort liegt in der Wärmeleitung. Unsere Haut hat etwa eine Temperatur von 30°C. Wenn wir einen Gegenstand anfassen, der kälter ist als die Haut, kann die Wärme von der Haut auf diesen Gegenstand übergehen. Die unterschiedlichen Wärmeübergangsmechanismen habe ich bereits im Artikel zur „eingefrorenen Windschutzscheibe“ erklärt (https://lustaufwissen.wordpress.com/2015/04/28/die-eingefrorene-windschutzscheibe/ ). Da hier ein direkter Kontakt vorliegt spricht man von Wärmeleitung.

Wärmeleitung kann aber nicht nur zwischen zwei verschiedenen Dingen stattfinden, sondern auch innerhalb eines Gegenstandes (hier Holz bzw. Metall). Diese Wärmeleitung ist aber nicht in jedem Stoff gleich gut. Metalle haben in der Regel eine sehr gute Wärmeleitfähigkeit. Wärme, die an einer Stelle an das Metall gelangt, kann also sehr schnell durch das ganze Metallstück geleitet werden und verteilt sich darin. Holz besitzt im Gegensatz dazu eine eher schlechte Wärmeleitfähigkeit.

Wenn man nun mit dem warmen Finger ein Stück Metall berührt, geht die Wärme vom Finger in das Metall über. Dort wird die Wärme aber sofort abgeführt und verteilt. Die Berührungsstelle nimmt also nicht die Temperatur des Fingers an sondern bleibt kühl und entzieht dem Finger somit immer mehr Wärme. Das Resultat ist, dass sich das Metall tatsächlich wie 20° anfühlt. Im Vergleich zu den 30° der Haut also kühl. Beim Holz funktioniert das Ableiten der Wärme nicht so gut. Die Berührungsstelle nimmt also die Temperatur des Fingers an und das Holz kommt einem dann wärmer vor als das Metall. Das Ganze passiert natürlich so schnell, dass man beim Holz nicht merkt wie es sich aufwärmt.

Dinge, die uns bei gleicher Temperatur kühler vorkommen sind folglich gar nicht kühler, sie besitzen nur eine bessere Wärmeleitfähigkeit.

Gleiches gilt natürlich auch für Temperaturen oberhalb der Hauttemperatur. Bei heißem Metall kann nach dem Übergang der Wärme an der Berührungsstelle die Wärme aus dem restlichen Teil des Metalls schnell nachfließen und wieder in die Haut übergehen. Bei Holz dauert das länger. Folglich sind Verbrennungen an Metall deutlich gravierender als die, die bei Berührung mit Holz entstehen. Auch wenn Holz und Metall die gleiche Temperatur haben.