Schlagwort-Archive: funktioniert

Wie funktioniert ein 3D-Drucker?

Du hast bestimmt schon einmal von 3D-Druck gehört und das man damit mittlerweile fast alles herstellen kann. Aber weißt du auch, wie so ein 3D-Drucker funktioniert?

Das prinzipielle Verfahren ist, dass ein dreidimensionales Modell Schicht für Schicht aufgebaut wird. Benötigt werden dafür Materialien, die unter bestimmten Bedingungen ihre Eigenschaften ändern und beispielsweise schmelzen oder eben auch wieder aushärten. Weit verbreitet sind drei verschiedene Verfahren des 3D-Drucks. Die Stereolithographie, das Laser-Sintern und das Fused Deposition Modeling. In allen Fällen werden die Modelle bereits als 3D-Datei an den Drucker übermittelt. Bei der Stereolithographie kommt ein flüssiges Epoxidharz als Basismaterial zum Einsatz. Eine Hebebühne, die in einem Becken aus Epoxidharz angebracht ist fährt schrittweise von oben nach unten. In jedem Schritt wird mit einem Laser eine Schicht des Modells abgefahren. Überall, wo der Laser entlangfährt, härtet das Harz aus und am Ende entsteht eine dreidimensionale Struktur. Beim Laser-Sintern hingegen dient ein Kunststoffpulver als Ausgangsmaterial. Dieses Pulver kann mit Hilfe eines Lasers punktuell aufgeschmolzen werden und verhärtet anschließend sehr schnell wieder. Das Pulver wird hier mit Hilfe einer Rolle schichtweise aufgetragen und in jede Pulverschicht die entsprechende Struktur des Modells rein „gebrannt“. Überschüssiges Pulver kann am Ende abgebürstet werden. Das letzte Verfahren, das Fused Deposition Modeling, arbeitet etwas anders. Hier gibt es im Drucker ähnlich wie bei 2D-Druckern eine Düse, die einen vorher verflüssigten Kunststoff Schicht für Schicht auf das Modell aufträgt. Sobald der flüssige Kunststoff die Düse verlassen hat, härtet er aus und bildet somit das 3D-Objekt.

Grundsätzlich gibt es 3D-Drucker in allen Varianten und Größen von haushaltstauglichen Spielzeugen bis hin zu industriellen Großanlagen. Die sehr präzise Technik der 3D-Drucker wird immer weiter entwickelt, so dass mittlerweile erstaunliches damit „gedruckt“ werden kann.

 

Quellen:

https://www.printer-care.de/de/drucker-ratgeber/wie-funktioniert-ein-3d-drucker

https://www.tintenmarkt.de/Blog/Der-3D-Druck-was-ist-das-und-wie-funktioniert-er-1538

https://praxistipps.chip.de/wie-funktioniert-ein-3d-drucker-verstaendlich-erklaert_45124

Wie funktioniert eine Mikrowelle?

Vor ein paar Wochen ging es um die Funktionsweise eines Induktionsherdes. Schon viel länger Einzug in die meisten Haushalte hat die „Mikrowelle“ erhalten. Eigentlich muss man von einem Mikrowellenherd sprechen, da die Mikrowelle nur das physikalische Phänomen hinter dem Gerät ist. Aber wie genau erwärmt ein Mikrowellenherd eigentlich das Essen?

Wie der Name schon sagt, spielen hier die sogenannten Mikrowellen die entscheidende Rolle. Mikrowellen sind elektromagnetische Wellen mit einer Wellenlänge von 0,1 bis 30 cm. In Mikrowellenherden werden Wellen mit etwa 12 cm Länge erzeugt. Zum Vergleich: Sichtbares Licht hat eine Wellenlänge von 0,4 bis 0,7 mm, Radiowellen liegen im Bereich von Metern bis hin zu Kilometern. Aber was bewirken die erzeugten Mikrowellen in dem Essen?

Eine elektromagnetische Welle hat nur einen Einfluss auf ein Molekül, wenn dieses einen Dipol besitzt. Das heißt, dass eine Seite des Moleküls leicht positiv, die andere Seite negativ geladen ist. Wasser, das in jedem unserer Lebensmittel enthalten ist, weißt genau so einen Dipol auf. Wenn ein Wassermolekül sich nun in einem elektromagnetischen Feld aus Mikrowellen befindet, wird es durch die Schwingung der Wellen in Rotation versetzt. Die Moleküle fangen also an sich zu bewegen. Da sie aber in einer festen Mahlzeit oder auch einer Flüssigkeit sehr eng nebeneinander liegen, kollidieren die Moleküle und durch die auftretende Reibung entsteht Wärme. Diese Wärme sorgt dann für die Erhitzung der gesamten Speise.

Da der menschliche Körper auch zu einem Großteil aus Wasser besteht, sind Mikrowellen für Menschen nicht ganz ungefährlich. Denn das Selbe, was mit dem Essen passiert, kann auch mit menschlichem Gewebe passieren, wenn es Mikrowellen ausgesetzt wird. Aus diesem Grund sind Mikrowellenherde nach außen hin mit einem Metallgehäuse abgeschirmt. An Metall werden Mikrowellen nämlich reflektiert und bleiben so im Inneren des Herdes. Auch in die eigentlich für Mikrowellen durchlässige Glasscheibe ist ein Metallgitter eingebaut. Durch die Sicherheitsfunktion, dass der Herd nur eingeschaltet werden kann, wenn die Klappe geschlossen ist, geht von so einem Herd allerdings keine Gefahr für den Betreiber aus.

 

Quellen:

https://www.weltderphysik.de/thema/hinter-den-dingen/mikrowellenherd/

https://praxistipps.focus.de/wie-funktioniert-eine-mikrowelle-einfach-erklaert_45520

Wie funktioniert ein Induktionsherd?

Wer in den letzten Jahren einen Herd gekauft hat, stand mit Sicherheit vor der Frage: Welche Art von Herd will ich denn eigentlich? Immer mehr Menschen entscheiden sich beim Kauf für die wohl neuste Variante, einen Induktionsherd. Aber wie funktioniert eigentlich so ein Induktionsherd und was unterscheidet ihn von anderen Herden?

Die Hauptneuerung beim Induktionsherd ist, dass am Herd selber, also auch auf den Herdplatten beim Kochen erst einmal gar nichts heiß wird. Im Gegensatz zu herkömmlichen Herden gibt es nämlich keine Wärmequelle unter den Herdplatten. Im Induktionsherd ist an dieser Stelle nur eine Spule, die zwar von Strom durchflossen wird, aber sich dabei nicht erhitzt. Eine herkömmliche Heizspule hat einen so großen Widerstand, dass sie sich erhitzt, wenn sie von Strom durchflossen wird. Diesen Effekt kennt man unter anderem auch von Glühbirnen mit einem Glühdraht. Die Induktionsspule leitet den Strom allerdings sehr gut. Wird so eine Spule aber mit einem Wechselstrom durchflossen, der mit hoher Frequenz quasi immer seine „Richtung“ wechselt, erzeugt sie im näheren Umfeld ein Magnetfeld. Auch dieses Magnetfeld wechselt dabei ständig seine Ausrichtung. Genau das passiert erst einmal, wenn man den Herd einschaltet. Auf dem leeren Herd wird auch noch nichts heiß. Erst wenn man einen Topf auf die Platte stellt passiert etwas. Genauso, wie der Strom in der Spule ein Magnetfeld hervorruft, kann anders herum ein Magnetfeld in einem metallischen Gegenstand (Topf) einen Strom hervorrufen. Metalle besitzen freie Elektronen, die durch das Magnetfeld in Bewegung gebracht werden. Es fließt quasi ein ständig wechselnder Strom im Topfboden, ein sogenannter induzierter Wirbelstrom. In dem schlecht leitenden Topf mit hohem Widerstand passiert jetzt wieder das, was auch in einer Glühbirne oder einer Heizspule passiert. Der Topf erwärmt sich. Natürlich nicht so stark, dass er zu glühen anfängt, aber doch stark genug, dass man gut darin kochen kann. Da ein Magnetfeld aber nur auf Metalle einen Einfluss hat, wird die Herdplatte selber, welche aus einer Glaskeramik besteht, nicht warm. Wenn man den Topf nach dem Kochen von der Platte nimmt, ist diese aber natürlich auch warm, da ja ein heißer Topf drauf stand.

Häufig wird die Frage gestellt, ob so ein Induktionsherd denn gefährlich sein kann. Tatsächlich gibt es ein paar Regeln, die man beim Kochen am Induktionsherd beachten sollte. Genauso wie der Topf im Magnetfeld heiß wird, kann das nämlich auch mit einem Ring, einer Halskette oder anderen metallischen Gegenständen passieren. Auch elektrische Komponenten, wie Uhren oder auch Herzschrittmacher können durch das Magnetfeld beeinflusst werden. Entsprechende Gegenstände sollten dann beim Kochen eben nicht getragen werden und im Falle eines Herzschrittmachers ist vielleicht doch zu überlegen, ob man sich nicht einen anderen Herd zulegt. Allgemein sind die Auswirkungen von Magnetfeldern, wie die eines Induktionsherdes, auf den menschlichen Körper nicht komplett verstanden und werden dadurch häufig diskutiert. Die WHO (Weltgesundheitsorganisation) hat diese allerdings als möglicherweise Krebs erregend eingestuft. Grundsätzlich macht also ein gewisser Sicherheitsabstand zur Platte und damit dem Magnetfeld Sinn, den man bei einem herkömmlichen Herd aber normalerweise auch einhält.

 

Quellen:

https://www.weltderphysik.de/thema/hinter-den-dingen/physik-des-induktionsherdes/

https://praxistipps.focus.de/induktionsherd-und-die-gesundheit-so-gefaehrlich-sind-die-kochfelder_59673

Wie funktioniert ein selbst kühlendes Bierfass?

Im Sommer am See, auf der Grillparty oder am Festivalgelände ohne Strom ein kühles Bier genießen zu können ist nicht immer einfach. Selbst kühlende Bierfässer sind hierfür perfekt geeignet. Man muss nur einen Hebel umlegen und das Bier ist innerhalb weniger Minuten auf Kühlschranktemperatur. Aber wie funktioniert das, so ganz ohne Strom?

In der Technik eines selbst kühlenden Bierfasses werden rein physikalische Effekte ausgenutzt. Nämlich zum Einen die Verdunstung von Wasser und zum Anderen die Adsorption von Wasserdampf auf einer hydrophilen, also Wasser anziehenden Oberfläche. Wie ist nun so ein Bierfass aufgebaut? Ganz innen liegt natürlich der Behälter für das Bier. Direkt um diesen Behälter befindet sich eine Schicht mit einem Material, das Wasser aufsaugen kann. Das kann zum Beispiel eine Art Fließ oder Watte sein. In der nächsten Schicht befindet sich ein so genannter Zeolith. Das ist ein in der Natur vorkommendes, poröses Material mit sehr kleinen Poren. Dieses Zeolith Material hat auf Grund der feinen Poren eine sehr große Oberfläche. Außerdem ist es hydrophil. Das bedeutet, dass Wasser(dampf) stark dazu tendiert sich auf der Oberfläche des Zeolithen anzulagern – man spricht dabei von adsorbieren. Die Kammern mit nasser Watte und Zeolith sind abgetrennt und können über ein Ventil miteinander verbunden werden. Außerdem wird die Zeolith-Kammer so gut es geht evakuiert, so dass ein Vakuum vorliegt. Auch aus der Kammer mit der nassen Watte wird die Luft gesaugt, allerdings nur so weit, dass das Wasser gerade so noch flüssig bleibt. Bei zu geringem Druck würde das Wasser schon verdampfen bevor man das Ventil öffnet.

In diesem Zustand wird die innerste Kammer des Fasses mit Bier gefüllt und verschlossen. Ab diesem Zeitpunkt kann jederzeit der Hebel am Fass umgelegt werden, der das Ventil zwischen den evakuierten Kammern öffnet. Wenn das geschieht, findet ein Druckausgleich statt, da in der Watte-Kammer ja noch ein Restdruck gelassen wurde. Dieser sinkt jetzt noch weiter und das Wasser in der Watte fängt an zu verdampfen. Das Verdampfen benötigt aber Energie. Diese Energie wird dem Bier entzogen, welches dadurch abgekühlt wird. So weit so gut doch in einer geschlossenen Kammer verdampft nur ein geringer Teil des Wassers. Nämlich so lange, bis sich ein Gleichgewicht zwischen Flüssigkeit und Dampf eingestellt hat. Jetzt kommt der Zeolith ins Spiel. Durch die Adsorption des verdampften Wassers auf dessen Oberfläche sorgt der nämlich dafür, dass sich eben kein Gleichgewicht einstellt, sondern der entstehende Wasserdampf sofort „abgezogen“ wird.  Der Verdampfungsprozess kann somit weiter laufen und das Bier wird weiter gekühlt.

Dem Wasser in der Watte wird durch die Verdampfung so viel Wärme entzogen, dass es relativ schnell sogar gefriert. Ab diesem Zeitpunkt verlangsamt sich die Verdampfung. Das Bier wird aber trotzdem weiter gekühlt, da die Wärme aus dem Bier jetzt auch noch dafür benötigt wird um das gefrorene Wasser erst einmal zu schmelzen. Dadurch hält der Kühlvorgang über mehrere Stunden an und es kann lange kaltes Bier genossen werden.

Während der Adsorption des Wassers wird die aus dem Bier gezogene Wärme übrigens wieder freigesetzt und über die Fasswand nach außen abgegeben. Das Fass fühlt sich daher von außen warm an, wird innen aber gekühlt. Bei der nächsten Grillparty weißt du jetzt also auch warum das Bier durch das Umlegen eines Hebels gekühlt werden kann.

 

Quellen:

http://www.uni-protokolle.de/Lexikon/Selbstk%FChlendes_Bierfass.html

http://www.tucher.de/unsere-biere/unser-sortiment/unser-coolkeg/

Wie funktioniert ein Alkoholmessgerät?

Die Kirchweihzeit hat bereits begonnen und auch wenn man es meist vermeiden will, fährt der Ein oder Andere auch mal mit dem Auto hin. Hier gilt dann immer die gleiche Frage: Wie viel kann ich trinken um unter den erlaubten 0,5 Promille zu bleiben? Ein guter Test ob man noch Autofahren darf ist ein wiederverwendbares Alkoholmessgerät, wie es auch die Polizei verwendet. Man pustet hinein und auf der Anzeige steht der Promille-Wert. Aber wie funktioniert so ein Messgerät eigentlich?

Die meisten Geräte messen den Alkoholgehalt im Atem mit Hilfe einer elektrochemischen Zelle. Diese besteht aus zwei Elektroden, von denen eine mit Ethanol (also „Trink“- Alkohol) reagiert. Dabei gibt das Ethanol Elektronen ab, die dann über ein Elektrolyt zur zweiten Elektrode transportiert werden. Über eine Verbindung der beiden Elektroden fließen die Elektronen dann wieder zurück. Es entsteht also ein Stromfluss, der gemessen werden kann. Je höher der Ethanol Anteil im Atem ist, desto größer ist der Stromfluss zwischen den Elektroden. Da der Alkohol im Blut gemessen werden soll und dieser höher ist als der Anteil im Atem, wird der generierte Wert noch mit einer Konstante multipliziert und der errechnete Promille-Wert kann auf dem Display angezeigt werden.

Der Vorteil eines solchen Alkoholmessgerätes ist, dass es beliebig oft wiederverwendet werden kann. So kann man, wenn man unsicher ist, vor der Autofahrt testen, ob man noch fahren darf oder ob man doch lieber auf dem Sofa vom Kumpel übernachten sollte.

 

Quellen:

https://www.alkoholtester-infos.de/digitale-alkoholtester-funktionsweise/

https://www.tagesspiegel.de/berlin/so-funktionieren-alkoholmessgeraete-fuer-die-atemluft/851690.html

Wie funktioniert Sonnencreme?

So langsam macht sich doch der Sommer und vor allem die Sonne bei uns breit. Die Tage werden immer wärmer und die Sonne immer intensiver. Um sich trotzdem in die Sonne legen zu können greifen wir zur Sonnencreme um nicht am nächsten Tag mit einem ordentlichen Sonnenbrand aufzuwachen. Aber wie funktioniert eigentlich eine Sonnencreme? Wie kann sie uns vor der gefährlichen Strahlung der Sonne schützen?

Die Meisten wissen, dass die UV-Strahlung der Sonne diejenige ist, die Sonnenbrand und andere Hautschäden verursacht und dass Sonnencremes über einen UV-Schutz verfügen. Vielleicht hast du dich ja auch schon einmal gefragt, wie dieser UV-Schutz eigentlich funktioniert.

Es gibt zwei Mechanismen, die in Sonnencremes verwendet werden, um uns vor UV-Strahlung zu schützen. Einen physikalischen Effekt und einen chemischen. Für den physikalischen Effekt werden der Sonnencreme sehr kleine Teilchen aus Metalloxiden wie Titanoxid oder Zinkoxid zugegeben. Diese Teilchen, die beim Einschmieren auf der Hautoberfläche haften bleiben, wirken wie winzige Spiegel. Die Spiegel reflektieren einen Großteil des auf die Haut fallenden UV-Lichts und sorgen dadurch dafür, dass die Strahlung gar nicht erst in die Haut eindringen kann. Für den chemischen Effekt werden der Creme synthetische Stoffe beigemischt, die nach dem auftragen in die Haut eindringen und dort einen Schutzfilm bilden. In diesem Schutzfilm wird die Strahlung nicht reflektiert, sondern unschädlich gemacht. Die UV-Strahlung wird von den Stoffen absorbiert und in für uns unschädliche Infrarotstrahlung, also Wärme, umgewandelt.

Die meisten Sonnencremes kombinieren beide Effekte um möglichst effizient zu wirken. Ein 100%iger Schutz vor UV-Strahlung ist aber nie gewährleistet. Unsere Haut hat aber ja auch noch einen eigenen Schutzmechanismus, nämlich die Hautbräune. Einen Artikel zum Thema „Warum werden wir von der Sonne braun“ findest du auf diesem Link. Dort ist auch der Unterschied zwischen UV-A und UV-B Strahlung beschrieben.

Wenn du dich jetzt das nächste Mal mit einer Sonnencreme einschmierst weißt du auch was diese bewirkt und vor allem wie sie es tut.

 

Quellen:

http://www.wdr.de/tv/kopfball/sendungsbeitraege/2013/0512/sonnenmilch.jsp

http://www.pflichtlektuere.com/26/07/2013/wissenswert-so-funktioniert-sonnencreme/

https://www.welt.de/wissenschaft/article108370049/So-funktioniert-die-Chemie-der-Sonnencreme.html

Wie funktioniert eine LED?

Sie sind heutzutage nicht mehr weg zu denken – LEDs. LED steht für „light emitting diode“ und ist eine Diode, also ein elektrisches Bauteil, das Licht aussendet, wenn es von Strom durchflossen wird. Sie finden in allen Lebensbereichen ihren Einsatz und sind immer mehr dabei herkömmliche Leuchtmittel, wie Glühbirnen zu verdrängen. Aber wie funktioniert eine LED eigentlich und was macht sie besser als eine Glühbirne?

Eine LED besteht aus einem sogenannten Halbleitermaterial. Solche Halbleiter haben die Eigenschaft, dass sie aus einer Seite mit einem Elektronenüberschuss und einer Seite mit einem Elektronenmangel bestehen. Fließt nun Strom durch die Diode, können die Elektronen aus der Überschussseite in die Mangelseite übergehen. Bei diesem Übergang gehen die Elektronen in einen energieärmeren Zustand über. Die Differenz von höherem Energiezustand zum Niedrigeren wird bei diesem Vorgang als Licht abgegeben. Dieses Licht hat eine ganz bestimmte Wellenlänge, die vom verwendeten Material abhängig ist. Je höher der Energieunterschied, desto geringer ist die Wellenlänge des ausgesendeten Lichts. Kleine Wellenlängen bedeuten bläuliches Licht bis hin zu ultraviolett, langwelliges Licht hingegen ist rot. Über das in der LED verwendete Halbleitermaterial kann somit die Farbe des Lichts eingestellt werden. Für weiße LEDs müssen viele verschiedene Wellenlängen überlagert werden. Je kontinuierlicher das Spektrum des Lichts ist, also je mehr Wellenlängenbereiche vorhanden sind, desto „wärmer“ wird das weiße Licht und desto angenehmer empfinden wir es.

LEDs sind deutlich effizienter als herkömmliche Glühbirnen. Das liegt daran, dass bei LEDs der größte Teil des Stroms tatsächlich in Licht umgewandelt wird. Bei einer Glühbirne wird ein Großteil einfach in Wärme umgewandelt. Das merkt man sehr schnell wenn man eine Glühbirne anfasst, die eine Zeit lang in Betrieb war. Außerdem haben LEDs in der Regel mit bis zu 100.000 Betriebsstunden eine deutlich höhere Lebenserwartung als Glühbirnen. Aus diesen Gründen sind LEDs immer mehr dabei in allen Bereiche des alltäglichen Lebens Einzug zu erhalten und werden auch weiterhin durch voranschreitende Entwicklung den Leuchtstoffmarkt erobern.

Quellen:

https://www.simplyscience.ch/teens-liesnach-archiv/articles/was-ist-eine-leuchtdiode.html

https://www.simplyscience.ch/energie-umwelt/articles/die-led-eine-clevere-technologie.html?_locale=de

Wie funktionieren Knicklichter

Die Party und Disco Saison fängt langsam wieder an und auf vielen Partys werden sogenannte Knicklichter verteilt oder mitgebracht. Einfache Plastikstäbchen, die man knicken muss damit sie für den Rest des Abends in allen möglichen Farben leuchten. Aber was passiert genau in so einem Knicklicht, damit das Leuchten erzeugt wird?

Zuerst einmal zum Aufbau. In den Plastikstäbchen befindet sich eine sehr dünne Glasampulle, die es ermöglicht zwei Kammern zu schaffen. Eine in der Glasampulle und die Andere zwischen Glas und Plastikstäbchen. Im Inneren der Glasampulle befindet sich eine 30%ige Wasserstoffperoxid Lösung. Wasserstoffperoxid (H2O2) wird zum Beispiel zum Bleichen von Haaren verwendet und ist aus chemische Sicht ein starkes Oxidationsmittel. In der Kammer zwischen Glasampulle und Kunststoffröhrchen befinden sich zwei Chemikalien. Zum Einen eine fluoreszenzfähige Verbindung, die später für die Aussendung des farblichen Lichts verantwortlich ist. Zum Anderen ein Oxalsäureester, der mit dem beim Knicken frei werdenden H2O2 reagiert. Wenn das Knicklicht nun geknickt wird, zerbricht die Glasampulle in dem Stäbchen und die beiden Kammern vermischen sich. Mehrfaches Knicken und Schütteln sorgt für eine bessere Durchmischung im Stäbchen und löst im ganzen Bereich die Reaktion aus. Durch die Energie dieser Reaktion können Elektronen der fluoreszenzfähigen Verbindung angeregt werden. Wenn diese angeregten Elektronen dann wieder in ihren Ausgangszustand zurück fallen, wird Energie in Form von Licht frei. Die Wellenlänge und damit die Farbe des Lichtes ist dabei von der fluoreszierenden Substanz abhängig.

So „einfach“ kann ein Partyabend mit ein paar Plastikstäbchen dekorativ aufgewertet werden. Die Reaktionsdauer und damit die Leuchtdauer ist übrigens von der Temperatur abhängig. Je wärmer, desto schneller läuft die Reaktion ab und desto schneller verblasst die Farbe des Knicklichtes. Ein Knicklicht in der Hosentasche leuchtet also nicht so lange wie eines, das im Schnee liegt.

Wie funktioniert ein Taschenwärmer?

Bevor die kalte Jahreszeit sich langsam dem Ende neigt, noch ein Thema für den Winter.

Wie funktionieren die Taschenwärmer?

Viele haben vielleicht schon einmal einen benutzt. Man knickt das Metallplättchen im Inneren und der Taschenwärmer wird warm. Für die Wiederverwendung muss er dann in kochendes Wasser gelegt werden. Aber was passiert dabei eigentlich, dass die Wärme frei wird?

Die Substanz, die sich im Inneren eines solchen Taschenwärmers befindet, nennt sich Natriumacetat Trihydrat. Natriumacetat ist ein Salz (allerdings keines, dass zum Verzehr geeignet ist). Trihydrat bedeutet, dass an jedem Salzmolekül drei Wassermoleküle hängen, die das Salz umgeben.

Beim Erwärmen im kochenden Wasser trennen sich die Wassermoleküle vom Salz, wodurch das Salz sich wiederum im freigewordenen Wasser lösen kann. Wie Kochsalz, dass man in Wasser gibt. Da die Menge an Salz, die im Wasser gelöst werden kann von der Temperatur abhängt, würde beim Abkühlen normalerweise das Salz wieder kristallisieren, also fest werden. Dafür benötigt es aber einen Auslöser, wie zum Beispiel eine Unreinheit oder eine raue Oberfläche. Wenn man den Taschenwärmer in Ruhe abkühlen lässt, gibt es keine Auslöser für die Kristallisation. Was jetzt entsteht ist also ein Zustand, in dem das immer noch gelöste Salz eigentlich fest werden will, aber ohne Auslöser nicht kann. Diesen Zustand nennt man „Metastabil„. Der Auslöser, der den metastabilen Zustand zum Einsturz bringt, ist das Knicken des Metallplättchens im Taschenwärmer. An der Knickstelle entsteht auf mikroskopischer Ebene eine raue Oberfläche, an der die Kristallisation beginnen kann. Wenn einmal ein Salzkristall gebildet ist geht es ziemlich schnell und es dauert nicht lange, bis der ganze Inhalt des Taschenwärmers fest ist. Die dabei entstehende Wärme, die dann die Hände wärmt, ist die Selbe, die man mit heißem Wasser reinstecken musste, um den Inhalt zu verflüssigen.

Ein Taschenwärmer ist also im Prinzip ein chemischer Wärmespeicher, den man mit heißem Wasser Aufladen und durch das Knicken des Metallplättchens wieder entladen kann.

Schweiß – Wie funktioniert die menschliche Klimaanlage?

An diesen heißen Tagen kommt man leicht ins Schwitzen, was in der ein oder anderen Situation auch mal unangenehm sein kann. Doch warum schwitzen wir überhaupt? Der Körper will sich abkühlen klar – aber was bringt da der Schweiß?

Der Kühlungseffekt erfolgt erst dann, wenn der Schweiß, der zum Großteil aus Wasser besteht, auf der Haut verdunstet. Also vom flüssigen in den gasförmigen Zustand übergeht. Das passiert jeder Zeit wird aber bei höheren Temperaturen beschleunigt. Für diesen Übergang benötigt jeder Stoff, also auch Wasser bzw. Schweiß, Energie in Form von Wärme. Diese Wärme wird vom Schweiß aus der warmen Umgebung aber zum Teil auch aus der Haut entzogen, wodurch diese sich folglich abkühlt.

Der Schweiß, der ja mit nahezu Körpertemperatur aus der Haut austritt, kann den Körper also gar nicht herunter kühlen. Erst durch das Verdunsten wird der Haut Wärme entzogen, wodurch der gewünschte Kühleffekt eintritt.