Schlagwort-Archive: Druck

Wie funktioniert ein selbst kühlendes Bierfass?

Im Sommer am See, auf der Grillparty oder am Festivalgelände ohne Strom ein kühles Bier genießen zu können ist nicht immer einfach. Selbst kühlende Bierfässer sind hierfür perfekt geeignet. Man muss nur einen Hebel umlegen und das Bier ist innerhalb weniger Minuten auf Kühlschranktemperatur. Aber wie funktioniert das, so ganz ohne Strom?

In der Technik eines selbst kühlenden Bierfasses werden rein physikalische Effekte ausgenutzt. Nämlich zum Einen die Verdunstung von Wasser und zum Anderen die Adsorption von Wasserdampf auf einer hydrophilen, also Wasser anziehenden Oberfläche. Wie ist nun so ein Bierfass aufgebaut? Ganz innen liegt natürlich der Behälter für das Bier. Direkt um diesen Behälter befindet sich eine Schicht mit einem Material, das Wasser aufsaugen kann. Das kann zum Beispiel eine Art Fließ oder Watte sein. In der nächsten Schicht befindet sich ein so genannter Zeolith. Das ist ein in der Natur vorkommendes, poröses Material mit sehr kleinen Poren. Dieses Zeolith Material hat auf Grund der feinen Poren eine sehr große Oberfläche. Außerdem ist es hydrophil. Das bedeutet, dass Wasser(dampf) stark dazu tendiert sich auf der Oberfläche des Zeolithen anzulagern – man spricht dabei von adsorbieren. Die Kammern mit nasser Watte und Zeolith sind abgetrennt und können über ein Ventil miteinander verbunden werden. Außerdem wird die Zeolith-Kammer so gut es geht evakuiert, so dass ein Vakuum vorliegt. Auch aus der Kammer mit der nassen Watte wird die Luft gesaugt, allerdings nur so weit, dass das Wasser gerade so noch flüssig bleibt. Bei zu geringem Druck würde das Wasser schon verdampfen bevor man das Ventil öffnet.

In diesem Zustand wird die innerste Kammer des Fasses mit Bier gefüllt und verschlossen. Ab diesem Zeitpunkt kann jederzeit der Hebel am Fass umgelegt werden, der das Ventil zwischen den evakuierten Kammern öffnet. Wenn das geschieht, findet ein Druckausgleich statt, da in der Watte-Kammer ja noch ein Restdruck gelassen wurde. Dieser sinkt jetzt noch weiter und das Wasser in der Watte fängt an zu verdampfen. Das Verdampfen benötigt aber Energie. Diese Energie wird dem Bier entzogen, welches dadurch abgekühlt wird. So weit so gut doch in einer geschlossenen Kammer verdampft nur ein geringer Teil des Wassers. Nämlich so lange, bis sich ein Gleichgewicht zwischen Flüssigkeit und Dampf eingestellt hat. Jetzt kommt der Zeolith ins Spiel. Durch die Adsorption des verdampften Wassers auf dessen Oberfläche sorgt der nämlich dafür, dass sich eben kein Gleichgewicht einstellt, sondern der entstehende Wasserdampf sofort „abgezogen“ wird.  Der Verdampfungsprozess kann somit weiter laufen und das Bier wird weiter gekühlt.

Dem Wasser in der Watte wird durch die Verdampfung so viel Wärme entzogen, dass es relativ schnell sogar gefriert. Ab diesem Zeitpunkt verlangsamt sich die Verdampfung. Das Bier wird aber trotzdem weiter gekühlt, da die Wärme aus dem Bier jetzt auch noch dafür benötigt wird um das gefrorene Wasser erst einmal zu schmelzen. Dadurch hält der Kühlvorgang über mehrere Stunden an und es kann lange kaltes Bier genossen werden.

Während der Adsorption des Wassers wird die aus dem Bier gezogene Wärme übrigens wieder freigesetzt und über die Fasswand nach außen abgegeben. Das Fass fühlt sich daher von außen warm an, wird innen aber gekühlt. Bei der nächsten Grillparty weißt du jetzt also auch warum das Bier durch das Umlegen eines Hebels gekühlt werden kann.

 

Quellen:

http://www.uni-protokolle.de/Lexikon/Selbstk%FChlendes_Bierfass.html

http://www.tucher.de/unsere-biere/unser-sortiment/unser-coolkeg/

Warum ist Deo auf der Haut kalt?

Jeder hat es schon einmal benutzt. Morgens oder nach dem Sport – ein Sprüh-Deodorant. Die im Volksmund als „Deo“ bezeichnete Substanz wird per Knopfdruck aus einer Dose auf ausgewählte Körperpartien gesprüht. Wovon man dann oft überrascht wird ist, dass sich das Deo auf der Haut sehr kalt anfühlt, obwohl es doch bei Raumtemperatur gelagert wird. Warum aber ist gesprühtes Deo so kalt?

Verantwortlich dafür ist der sogenannte Joule-Thomson-Effekt. Der besagt nämlich, das sich Gase bei einer Druckminderung abkühlen. Druckminderung bedeutet, dass ein Gas von einem Zustand höheren Drucks in einen Zustand niedrigeren Drucks überführt wird. Genau das passiert auch beim Deo. Die Deo-Dose steht unter Druck, damit der Inhalt überhaupt aus der Dose heraus strömen kann. Wenn das per Knopfdruck geschieht, reduziert sich der Druck der Substanz auf Umgebungsdruck. Man nennt das auch „Entspannung“ eines Gases. Bei genau diesem Vorgang kühlt sich die ausströmende Substanz, also das Deo, ab. Diese Kälte merken wir dann auf der Haut.

Auf molekularer Ebene passiert dabei Folgendes: Wenn ein Gas unter Druck steht, sind die Gas-Moleküle näher beieinander. Je näher sich Moleküle kommen, desto mehr können sie miteinander wechselwirken. Dabei entstehen Kräfte, die die Moleküle zusammenhalten. Sie ziehen sich also gegenseitig an. Wenn der Druck nun reduziert wird, breiten sich die Moleküle in einen größeren Raum aus und entfernen sich voneinander. Um das zu vollziehen müssen die vorher genannten Anziehungskräfte überwunden werden. Die Energie, die dafür benötigt wird, wird den Molekülen selber entzogen. Entzogene Energie ist hier gleich zu setzten mit einer Abkühlung, da sich die Bewegung der Teilchen reduziert. Das wiederum führt dann zu einer tieferen Temperatur des Gases.

Wenn du also das nächste Mal ein kaltes Deo auf deiner Haut spürst weißt du jetzt wenigstens warum da nicht angenehm warmes Deo aus der Dose kommt.

 

Anschauliches Erklärvideo:

Wie entsteht der Kältekopfschmerz „Gehirnfrost“

So langsam beginnt wieder die Zeit, in der man gerne mal ein Eis essen geht oder zur Erfrischung kalte Getränke zu sich nimmt. Doch beides kann ein unangenehmes Phänomen zur Folge haben: Den sogenannten Kältekopfschmerz oder auch „Hirnfrost“. Aber was genau ist eigentlich die Ursache dieses stechenden Schmerzes im Kopf?

Tatsächlich gibt es noch keine eindeutige, detaillierte Erklärung wie genau der Schmerz zustande kommt. Die verbreitetste Theorie, zu der auch schon Studien vorliegen ist, dass der Kältereiz am Gaumen die Blutgefäße in diesem Bereich erweitert. Grundsätzlich reagieren Gefäße auf Kälte eher mit einer Verengung. Allerdings konnte in Studien beobachtet werden, das im Falle des Hirnfrosts genau das Gegenteil passiert. Die Gefäße erweitern sich schlagartig. Eine Erklärung dafür ist eine Art Schutzmechanismus des Gehirns. Um das Gehirn vor einer Unterkühlung zu schützen werden die Gefäße erweitert und damit die Durchblutung gesteigert. Diese kurzzeitig stärkere Durchblutung hat einen leichten Druckanstieg im Kopf zur Folge, was wir dann als unangenehm stechenden Schmerz empfinden.

Um die Dauer des Schmerzes zu reduzieren muss der Gaumen schnellstmöglich wieder erwärmt werden. Das geht zum Beispiel indem die warme Zunge darauf gepresst wird oder, falls vorhanden, ein warmes Getränk getrunken wird. Gänzlich verhindern lässt sich der Hirnfrost durch langsames essen oder trinken, so dass der Gaumen zwischen jedem Stück Eis oder jedem Schluck kalten Getränks Zeit hat sich wieder zu erwärmen.

Gefährlich ist der Hirnfrost übrigens nicht. Zumindest nicht so lange er nach wenigen Sekunden wieder nachlässt.

 

Quellen:

https://www.chirurgie-portal.de/neurologie/themen/brain-freeze-gehirnfrost.html

Warum fliegt ein angeschnittener Ball eine Kurve? (Magnus-Effekt)

Jeder, der eine Ballsportart selber betreibt oder sportbegeisterter Zuschauer ist hat folgendes schon einmal gesehen: Ein rotierender Ball fliegt in der Luft eine Kurve. Für viele aktive Sportler ist das selbstverständlich aber warum fliegt der Ball eigentlich eine Kurve?

Grund hierfür ist der sogenannte Magnus Effekt, benannt nach dem Wissenschaftler, der den Effekt als Erster physikalisch beschrieben hat. Zunächst betrachten wir mal die Luft direkt an der Oberfläche eines rotierenden Balls. Diese Luft wird durch die Rotation und die dadurch entstehende Reibung in Bewegung versetzt. Der Ball reißt quasi eine kleine Luftschicht mit seiner Kreisbewegung mit. Wenn sich der Ball nun durch die Luft bewegt, wie er das zum Beispiel bei einem Freistoß beim Fußball tut, dann wird er zusätzlich gegen seine Flugrichtung mit Luft umströmt. Diese Luft tritt wiederum in Interaktion mit der dünnen Luftschicht, die von der Rotation des Balls mitgerissen wird. Auf der einen Seite strömt die Umgebungsluft und die dünne Luftschicht in die gleiche Richtung. Auf der anderen Seite allerdings genau entgegengesetzt. Die Folge ist, dass die Strömungsgeschwindigkeit auf der einen Seite erhöht, auf der Anderen aber reduziert wird. Bei strömenden Gasen (und Flüssigkeiten) gilt jetzt folgendes: Je höher die Strömungsgeschwindigkeit, desto geringer der Druck an dieser Stelle. Das hat irgendwann ein gewisser Daniel Bernoulli festgestellt und in der sehr bekannten und allgemein gültigen Bernoulli-Gleichung festgehalten. Für den rotierenden Ball bedeutet das, dass auf der einen Seite eine höherer Druck herrscht als auf der Anderen. Die Folge ist, dass der Ball eine Kraft in Richtung des geringeren Drucks erfährt und zur Seite gedrückt wird. Da dies während der ganzen Flugphase des Balls der Fall ist, fliegt dieser eine Kurve. Wie stark der Ball abgelenkt wird hängt vor allem von der Rotationsgeschwindigkeit ab.

In vielen Ballsportarten wird dieser Effekt oft ausgenutzt und jetzt weißt du auch warum er auftritt und sogar wie er heißt.

Ein sehr cooles Video demonstriert diesen Effekt mit einem Basketball, der mit und ohne Spin von einem Staudamm geworfen wird. Schaut´s euch mal an:

 

Quellen:

http://www.wissen.de/raetsel/warum-fliegt-der-eckball-eine-kurve

https://lp.uni-goettingen.de/get/text/3773